Original Research<\/strong><\/span><\/p>\n Dietary PUFA drives diverse systems-level changes in lipid metabolism, <\/em>Samuel Furse<\/strong>*, Samuel Virtue, Stuart G. Snowden, Antonio Vidal-Puig, Philip C. Stevenson, Davide Chiarugi, Albert Koulman*, Molecular Metabolism<\/em>, 2022<\/strong>, 59C, 101457, DOI: 10.1016\/j.molmet.2022.101457.<\/u><\/p>\n A mouse model of gestational diabetes shows dysregulated lipid metabolism post-weaning, after return to euglycaemia<\/em>, Samuel Furse<\/strong> & D.S. Fernandez-Twinn, Davide Chiarugi, S. E. Ozanne, A. Koulman, Nutrition & Diabetes<\/em>, 2022<\/strong>, 12<\/em>, 8. DOI: 10.1038\/s41387-022-00185-4<\/span>.<\/p>\n Paternal nutritional programming of lipid metabolism is propagated through sperm and seminal plasma<\/em>, Samuel Furse<\/strong>, A.J. Watkins, H.E.L. Williams, S.G. Snowden, D. Chiarugi, A. Koulman. Metabolomics<\/em>, 2022<\/strong>, 18<\/em>, 13. DOI: 10.1007\/s11306-022-01869-9.<\/u><\/p>\n Gestational diabetes alters lipid metabolism before, during and after pregnancy in mice<\/em>, Samuel Furse<\/strong> & D.S Fernandez-Twinn, D. Chiarugi, A. Koulman, S. E. Ozanne. Int. J. Mol. Sci., <\/em>2021<\/strong>, 22<\/em>, 7452. DOI: 10.3390\/ijms22147452.<\/u><\/p>\n Lipid traffic analysis reveals the impact of high paternal carbohydrate intake on offsprings\u2019 lipid<\/em> metabolism,\u00a0Samuel Furse*<\/strong>, A.J. Watkins, D. Chiarugi, N. Hojat, J. Smith, H.E.L. Williams, A. Koulman*.\u00a0 Comms Biol.<\/em>, 2021<\/strong>, 4<\/em>, 163.\u00a0 DOI: 10.1038\/s42003-021-01686-1<\/u>.<\/p>\n The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote<\/em>, M. V\u00edtov\u00e1, V. Lanta, M. \u010c\u00ed\u017ekov\u00e1, M. Jakubec, F. Rise, \u00d8. Halskau, K. Bi\u0161ov\u00e1, Samuel Furse<\/strong>* Biochimica et Biophysica Acta<\/em>, 2021<\/strong>, DOI: 10.1016\/j.bbalip.2021.158965<\/u>.<\/p>\n A pipeline for making 31<\/sup>P NMR accessible for small- and large-scale lipidomics studies,\u00a0<\/em>Samuel Furse*<\/strong>, H.E.L. Williams*, A.J. Watkins, S. Virtue, A. Vidal-Puig, R. Amarsi, M. Charalambous, A. Koulman*. Anal. and Bioanal. Chem.<\/em>, 2021<\/strong>, 413<\/em>, 4763.\u00a0 DOI: 10.1007\/s00216-021-03430-4<\/u>.<\/p>\n Lipid extraction from dried blood spots and dried milk spots for high throughput lipidomics, <\/em>Samuel Furse<\/strong>, A. Koulman.\u00a0 Molecular Omics<\/em>, 2020, DOI: 10.1039\/D0MO00102C<\/u>.<\/p>\n Extraction of lipids from liquid biological samples for high throughput lipidomics,\u00a0<\/em>Samuel Furse*<\/strong>, A.J. Watkins, A. Koulman*. Molecules<\/em>, 2020<\/strong>, 25, 3192. DOI: 10.3390\/molecules25143192<\/u>.<\/p>\n Extraction of lipids from liquid biological samples for high throughput lipidomics, <\/em>Samuel Furse<\/strong>, A. J. Watkins, A. Koulman. Molecules<\/em>, 2020<\/strong>, 25, 3192. DOI: 10.3390\/molecules25143192<\/u><\/p>\n A high throughput platform for detailed lipidomic analysis of a range of mouse and human tissues, <\/em>Samuel Furse<\/strong>, D. Fernandez-Twinn, B. Jenkins, C. L. Meek, H. E. L. Williams, G. C. S. Smith, D. S. Charnock-Jones, S. E. Ozanne, A. Koulman. Analytical and Bioanalytical Chemistry<\/em>, 2020<\/strong>, 412, 2851. DOI: 10.1007\/s00216-020-02511-0<\/u><\/p>\n Evidence that feeding <\/em>post partum and exposures in utero shape lipid metabolism in infancy, <\/em>Samuel Furse<\/strong>, S. G. Snowden, L. Olga, P. Prentice, K. K. Ong, I. A. Hughes, C. L. Acerini, D. B. Dunger, A. Koulman. Scientific Reports<\/em>, 2019<\/strong>, 9<\/em>, 14321 DOI: 10.1038\/s41598-019-50693-0<\/u><\/p>\n Altered triglyceride and phospholipid metabolism predates the diagnosis of gestational diabetes in obese pregnancy, <\/em>Samuel Furse<\/strong>, S. L. White, C. L. Meek, B. J. Jenkins, C. J. Petry, M. C. Vieira, D. B. Dunger, S. E. Ozanne, L. Poston, A. Koulman. Molecular Omics<\/em>, 2019<\/strong>, 15<\/em>, 420-430, DOI: 10.1039\/c9mo00117d<\/u><\/p>\n Relationship between the lipid composition of maternal plasma and infant plasma through breast milk, <\/em>Samuel Furse<\/strong>, G. Billing, S. G. Snowden, J. Smith, G. Goldberg, A. Koulman. Metabolomics<\/em>, 2019<\/strong>, 15<\/em>, 129. DOI:10.1007\/s11306-019-1589-z.<\/p>\n Fermentation of milk into yoghurt and cheese leads to contrasting lipid and glyceride profiles<\/em>, Samuel Furse<\/strong>*, A. G. Torres, A. Koulman*, Nutrients<\/em>, 2019<\/strong>, 11<\/em>, 2178.\u00a0 DOI: 10.3390\/nu11092178<\/u><\/p>\n The lipid and glyceride profiles of infant formula differ by manufacturer, region and date sold,<\/em> Samuel Furse<\/strong>*, A. Koulman, Nutrients<\/em>, 2019<\/strong>, 11<\/em>, 1122.\u00a0 DOI: 10.3390\/nu11051122<\/u><\/p>\n Evidence that <\/em>Listeria innocua<\/em>\u00a0modulates its membrane\u2019s stored\u00a0curvature elastic stress, but not\u00a0fluidity, through the cell cycle, <\/em>Samuel Furse<\/strong>, M. Jakubec, F. Rise, H. E. Williams, C. E. D. Rees, \u00d8. Halskau, Scientific Reports<\/em>, 2017.\u00a0 <\/strong>DOI: 10.1038\/s41598-017-06855-z<\/u>.<\/p>\n Pressure-dependent inverse bicontinuous cubic phase formation in a PI- 4\u2011phosphate\/ phosphatidylcholine system, <\/em>Samuel Furse<\/strong>, N. J. Brooks, R. Woscholski, P. R. J. Gaffney, R. H. Templer.\u00a0 Chemical Data Collections,\u00a0<\/em>2016<\/strong>, 3-4<\/em>, 15-20.\u00a0 DOI:\u00a010.1016\/j.cdc.2016.08.001<\/a>.<\/p>\n E. coli <\/span>MG1655 modulates its phospholipid composition through the cell cycle, <\/em>Samuel Furse*<\/strong>, H. Wienk, R. Boelens, A. I. de Kroon, J. A. Killian. <\/span>FEBS Letters<\/em>, <\/span>2015<\/strong>, <\/span>589<\/em>, 2726-2730. DOI: <\/span>10.1016\/j.febslet.2015.07.043.\u00a0<\/u><\/p>\n The Lipidome and Proteome of Oil Bodies from<\/em>\u00a0<\/em>Helianthus annuus\u00a0<\/em>(common sunflower)<\/em>, Samuel Furse<\/strong>, S. Liddell, C. Ortori, H. Williams, D. Neylon, D. J. Scott, D. A. Barrett, D. Gray.\u00a0 Journal of Chemical Biology<\/em>, 2013<\/strong>,\u00a06<\/em>, 63-76. DOI:\u00a010.1007\/s12154-012-0090-1<\/a>.<\/p>\n Lipid Membrane Curvature Induced by Distearoyl Phosphatidylinositol 4-Phosphate, <\/em>Samuel Furse<\/strong>, N.J.Brooks, A. Seddon, R. Woscholski, R.Templer, E.W.Tate, P. Gaffney, O. Ces.\u00a0 Soft Matter<\/em>, 2012<\/strong>, 8<\/em>, 3090-3093. DOI: 10.1039\/c2sm07358g<\/a>.<\/p>\n The cover of Issue 7 of Volume 8 of Organic & Biomolecular Chemistry<\/em><\/p><\/div>\n Synthesis of unsaturated phosphatidylinositol 4-phosphates and the effects of substrate unsaturation on <\/em>SopB phosphatase activity\u00a0<\/em> Chemical stress and the cell envelope: the phospholipid fraction <\/em>[Poster] The lipidome and proteome of oil bodies from <\/em>Helianthus annuus (common sunflower)<\/em> Lipid membrane curvature induced by distearoyl phosphatidylinositol 4-phosphate<\/em> \u00a0<\/p>\n Original Research (co-author)<\/strong><\/span><\/p>\n Maternal diet-<\/em>induced obesity during pregnancy alters lipid supply to mouse E18.5 fetuses and changes the cardiac tissue lipidome in a sex- dependent manner, <\/em>L. C. Pantale\u00e3o, I. Inzani, Samuel Furse<\/strong>, E. Loche, A. Hufnagel, T. Ashmore, H. L. Blackmore, B. Jenkins, A. A. M. Carpenter, A. Wilczynska, M. Bushell, A. Koulman, D. S. Fernandez-Twinn, S. E. Ozanne. eLife, 2022<\/strong>, DOI: 10.7554\/eLife.69078.<\/p>\n Comparison of the Lipidomic Signature of Fatty Liver in Children and Adults: A Cross-Sectional Study, <\/em>J.P. Mann, B. Jenkins, Samuel Furse<\/strong>, S. G. Snowden, A. Alisi, L.G. Draijer, K. Karnebeek, D.A. Kelly, B.G. Koot, A. Mosca, C. Salvestrini, I. van Mourik, A. Vreugdenhil, M. Zilbauer, A. Koulman.\u00a0 Journal of Pediatric Gastroenterology and Nutrition<\/em>, 2022<\/strong>, DOI: 10.1097\/MPG.0000000000003418.<\/p>\n SCD1, FADS1, and FADS2 activities as candidate biomarkers of early growth and adiposity.<\/em> L. Olga, J. A. van Diepen, I. Bobeldijk-Pastorova, G. Gross, P. M. Prentice, S. G. Snowden, Samuel Furse<\/strong>, T. Kooistra, I. A. Hughes, M. H. Schoemaker, E. A. F. van Tol, W. van Duyvenvoorde, P. Y. Wielinga, K. K. Ong, D. B. Dunger, R. Kleemann, A. Koulman. 2021, EBioMedicine<\/em>, DOI: 10.1016\/j.ebiom.2020.103198<\/p>\n Variants in MARC1 and HSD17B13 reduce severity of NAFLD in children, perturb phospholipid metabolism, and suppress fibrotic pathways<\/em>, C. A. Hudert, A. Alisi, Q. M. Anstee, A. Crudele, L. G. Draijer, EU-PNAFLD investigators, Samuel<\/strong> Furse<\/strong>, J. G. Hengstler, B. Jenkins, K. Karnebeek, D. A. Kelly, B. G. Koot, A. Koulman, D. Meierhofer, S. G. Snowden, I. van Mourik, A. Vreugdenhil, S. Wiegand, J. P. Mann. medRxiv<\/em>, 2020, DOI: 10.1101\/2020.06.05.20120956<\/p>\n Microencapsulated algal feeds as a sustainable replacement diet for broodstock in commercial bivalve aquaculture.\u00a0<\/em>D.F. Willer, Samuel Furse<\/strong>, D.C. Aldridge.\u00a0 Scientific Reports<\/em>, 2020, DOI: 10.1038\/s41598-020-69645-0<\/p>\n The Role of Tryptophan\u2010Nicotinamide (TRP\u2010NAM) Pathway in Malnutrition Induced Liver Dysfunction<\/em>. G. Hu, C. Ling, L. Chi, Samuel Furse<\/strong>, A. Koulman, R, Bandsma. FASEB Journal<\/em>, 2020<\/strong>, 34<\/em>, 1. DOI: 10.1096\/fasebj.2020.34.s1.08970<\/p>\n Cholesterol-containing lipid nanodiscs promote an \u03b1-Synuclein binding mode that accelerates oligomerization<\/em>, M. Jakubec, E. Bari\u00e5s, <\/span>Samuel Furse<\/strong>, M. L. Govasli, V. George, D. Turcu, I. Iashchishyn, L. Morozova-Roche, \u00d8. Halskau. <\/span>FEBS Journal, <\/em>2020<\/strong>, <\/span>288<\/em>, 1887. DOI: 10.1111\/febs.15551<\/span><\/p>\n Rapid profiling of triglycerides in human breast milk using LESA-FTMS reveals new VLCFAs and differences within individuals<\/em>, A. Koulman, Samuel Furse<\/strong>, M. Baumert, G. Goldberg, L. Bluck. Rapid Communications in Mass Spectrometry, <\/em>2019<\/strong>, 33<\/em>, 1267-1276. DOI: 10.1002\/rcm.8465<\/p>\n Associations between the maternal circulating lipid profile in pregnancy and fetal imprinted gene alleles: a cohort study.\u00a0 <\/em>C. J.\u00a0Petry, A.\u00a0Koulman, L.\u00a0Lu, B. J.\u00a0Jenkins, Samuel\u00a0Furse<\/strong>, P.\u00a0Prentice, L.\u00a0Matthews, I.\u00a0A.\u00a0Hughes, C.\u00a0L.\u00a0Acerini, K.\u00a0K.\u00a0Ong, D.\u00a0B.\u00a0Dunger. Reproductive Biology and Endocrinology<\/em>, 2018, 16<\/em>, 82.\u00a0 DOI: 10.1186\/s12958-018-0399-x<\/u>.<\/p>\n The Role of Endogenous Lipids in the Emulsifying Properties of Cocoa.<\/em> J. M. Gould, <\/span>Samuel Furse<\/strong> and B. Wolf. <\/span>Frontiers in Chemistry<\/em>, 2016, <\/span>4<\/em>, <\/span>11<\/em>. DOI: 10.3389\/fchem.2016.00011<\/span><\/p>\n Phytochemical Composition of<\/em> Oryza sativa (Rice) Bran Oil Bodies. <\/em>N. Nantiyakul, <\/span>Samuel Furse<\/strong>, I. Fisk, G. Tucker D. A. Gray. <\/span>Journal of the American Oil Chemists Society<\/em>,<\/span>2012<\/strong>,\u00a0<\/span>89<\/em>, 1867-1872. DOI: <\/span>10.1007\/s11746-012-2078-y<\/a>.<\/span><\/p>\n The Isolation of Oil Bodies from<\/em>\u00a0<\/em>Oryza sativa\u00a0<\/em>bran and Studies of their Physical Properties.<\/em> N. Nantiyakul,
Samuel Furse<\/strong>, LokHang Mak, Edward W. Tate, Richard H. Templer, Oscar Ces, R\u00fcdiger Woscholski and Piers R. J. Gaffney. Organic and Biomolecular Chemistry<\/em>, 2015<\/strong>, 13<\/em>, 2001-2011. DOI:\u00a0http:\/\/dx.doi.org\/10.1039\/c4ob02258k<\/a>. \u00a0Click here<\/a> for Open Access PDF of the article and here<\/a> for the cover PDF.\u00a0 PMID: 25515724<\/p>\n
Samuel Furse<\/strong>, Anton I. de Kroon and J. Antoinette Killian. Biophysical Journal<\/em>, 2014<\/strong>, 106<\/em>, 508A. DOI: http:\/\/dx.doi.org\/10.1016\/j.bpj.2013.11.2840<\/a><\/p>\n
Samuel Furse<\/strong>, Susan Liddell, Catharine A. Ortori, Huw Williams, D. Cameron Neylon, David J. Scott, David A. Barrett, David A. Gray. Journal of Chemical Biology<\/em>, 2013<\/strong>, 6<\/em>, 63-76. DOI: http:\/\/dx.doi.org\/10.1007\/s12154-012-0090-1<\/a>.\u00a0\u00a0PMID: 23532185.<\/p>\n
Samuel Furse<\/strong>, Nicholas J. Brooks, Annela M. Seddon, R\u00fcdiger Woscholski, Richard H. Templer, Edward W. Tate, Piers R. J. Gaffney, Oscar Ces.\u00a0 Soft Matter<\/em>, 2012<\/strong>, 8<\/em>, 3090-3093.\u00a0 DOI:\u00a0http:\/\/dx.doi.org\/10.1039\/c2sm07358g<\/a>.<\/p>\n